Sign up for our daily Newsletter and stay up to date with all the latest news!

Subscribe I am already a subscriber

You are using software which is blocking our advertisements (adblocker).

As we provide the news for free, we are relying on revenues from our banners. So please disable your adblocker and reload the page to continue using this site.
Thanks!

Click here for a guide on disabling your adblocker.

Sign up for our daily Newsletter and stay up to date with all the latest news!

Subscribe I am already a subscriber
National Science Foundation awards $2 million research grant

Fruit flies might be key to building resiliency in autonomous robots

The National Science Foundation has awarded Mechanical Engineering Assistant Professor Floris van Breugel a $2 million grant to adapt autonomous robots to be as resilient as fruit flies. Resiliency in autonomous robotic systems is crucial, especially for robotics systems that are used in disaster response and surveillance. Unfortunately, modern robots have difficulty responding to new environments or damage to their bodies that might occur during disaster response, van Breugel wrote in his grant application. In contrast, living systems are remarkably adept at quickly adjusting their behavior to new situations thanks to redundancy and flexibility within their sensory and muscle control systems.

Scientific discoveries in fruit flies have helped shed light on how these insects achieve resiliency in flight, according to van Breugel. His project will translate that emerging knowledge on insect neuroscience to develop more resilient robotic systems.

Source: unr.edu

Publication date: